Immortal Machines

AI Math that will positively impact all aspects of humanity
ENGINEERS Algorithm developers of the <u>machine</u> that designs the products of the future
SCIENTIST Discoverer of fundamental knowledge engineers use to optimize the <u>machine</u>

90 2465

Jason W. Carroll, Ph.D. Vice President, Global Technology Eaton Corporation

How can we enable machines to design the products of the future?

Who is Eaton?

We are an intelligent power management company made up of approximately 85,000 employees, doing business in more than 175 countries with annual sales of over \$19 billion USD.

We make what matters work.*

We make delivering your best work.

ELECTRICAL

© 2023 Eaton. All rights reserved.

INDUSTRIAL

Immortal Machines

Future of Product Engineering

Intersection of:

- Multiscale materials design & materials informatics
- Multiphysics engineering simulation & reduced order modeling
- Artificial intelligence driven design & process automation
- Generative design
- Additive manufacturing

Autonomously designed & continually optimizing Multi-scale, multi-physics optimized Aware

Eaton Journey

2018 - present

2018 - "Hey Siri, design me a tank..."

2020 - First awarded phase Autonomous Digital Design program with the US Army

2021 - Built US and Pune, India Digital Design team - focused on PhDs in materials & mechanical engineering with scientific machine learning expertise

2022 - Hired global Digital Design leader for Eaton Research Labs; Kickedoff "Lighthouse" program in EV mechanical system due to deep domain expertise & digital knowledge

2022 - Expanded Pune, India team to broaden impact

2022 - Globally deployed Esteco ModeFrontier & Volta

2023- 25 lead programs in Design automation globally

2023- Hired Global VP to drive to "Zero-Lead Time" engineering

Materials Informatics

Develop bespoke metallic & polymer materials using multi-scale materials optimization to meet novel electrification applications

Use scientific machine learning to rapidly develop bespoke materials with novel properties

AI/ML Recipe

Multi-Physics Simulation & ROMs

Multi-physics optimization and reduced-order modeling of Champ Lighting

	7L Design (Manual)	7L Design (Digital)	11L Design (Digital)
Optimized lighting designs			
Design Lead Time	16 weeks	16 weeks	<mark>2 Weeks</mark>
Accuracy (from test)	>90% (CFD model)	>90% (Al/ML model)	<mark>>94%</mark> (AI/ML model)

87% reduction in design time

- Voltage
- Efficiency

Mechanical CTQs

- Wind load
- Corrosion resistance
- Structural load

Optical CTQs

- Lumens rating
- Optical distribution
- Color rendering index

Thermal CTQs

- Heat transfer

Al-Driven Design & Process Automation

Orchestration of data and physics-informed AI models to automate the design of EV gears.

+65% reduction in design time

Poweling Business Worldwide

outer braneter	
6 1/2 (in)	ŧ
nternal Diameter	
2 3/4 (in)	Å. F
Tool Joint Connection	
4 1/2 IF	÷
Cooling System	
Water	÷
Application	

High Speed Gear Design

Generative Design

Intelligent design of liquid-to-air heat exchangers for Aerospace application with additive manufacturing constraints.

Optimized for cost, weight, heat load, efficiency, pressure drop Four-fold increase in heat rejected per kilogram while also reducing weight by 80%.

Additive Manufacturing

Since its inception in late 2016, Eaton additive has developed expertise in many metal & polymer printing systems, additive material development & printed electronics with additive products launched at multiple customers in Aerospace & Energy systems

(USA, India)

One Commercial Center of Excellence in Eaton Aerospace (SC, USA)

& polymers

Two Corporate AM Centers of Excellence

Adv. Material, Additive Mfg, & Digital Design teams intimately linked

Focus on rapid qualification techniques

Production parts in metal

Global additive tooling

Bringing it all together

What <u>Immortality</u> looks like:

- developing products with new physics & digital design tools to create extraordinary life & value
- products that can fix themselves healable, tell you it's sick, aware
- product design = "Hey Siri, Design me an X"
- no boundary between the digital & "real" world

DIGITAL DESIGN UI

Powering Business Worldwide

© 2023 Eaton. All rights reserved.